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Abstract. The aim of this work is to model and simulate processing-induced
heterogeneity in rigid, rod-like nematic polymers in viscous solvents. We em-
ploy a mesoscopic orientation tensor model due to Doi, Marrucci and Greco
which extends the small molecule, liquid crystal theory of Leslie-Ericksen-Frank
to nematic polymers. The morphology has various physical realizations, all
coupled through the model equations: the orientational distribution of the
ensemble of rods, anisotropic viscoelastic stresses, and flow feedback. Pre-
vious studies in plane Couette & Poiseuille flow (with the exception of [7])
have focused on the coupling between hydrodynamics and the orientational
distribution of rigid rod polymers with identical anchoring conditions at solid
boundaries; without flow, the equilibrium structure is homogeneous. Here we
explore steady structures that emerge with mismatch anchoring conditions at
the walls, which couple an equilibrium elastic distortion across the channel,
short and long range elasticity potentials, and hydrodynamics. In plane Cou-
ette (where moving plates drive the flow) and Poiseuille flow (where a pressure
gradient drives the flow), in the regime of weak flow and strong distortional
elasticity, asymptotic analysis yields closed-form steady solutions and scaling
laws with identical wall conditions. We focus simulations in this regime to
expose the effects due to wall anchoring conflicts, and illustrate the induced
morphology of the orientational distribution, stored viscoelastic stresses, and
non-Newtonian flow. A remarkably simple diagnostic emerges in this physical
parameter regime, in which salient morphology features are controlled by the
amplitude and sign of the difference in plate anchoring angles of the director
field at the two plates.

1. Introduction. In previous work [1, 9] the authors have studied steady struc-
ture scaling properties of nematic polymers in plane Couette cells (where imposed
plate motion drives the system) and in plane Poiseuille flow (driven by an im-
posed pressure gradient). The model employed is a combination of the Doi-Hess
theory for flowing rigid rod-like polymers in viscous solvents, together with the
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Marrucci-Greco distortional elasticity potential. A second-moment tensor describes
the orientational distribution of the ensemble of rod-like macromolecules, where the
full kinetic theory for the distribution function is projected onto a second-moment
description using closure rules. The experimental conditions and the model allow
an assumption that the spatial variations in flow, orientation, and stress are one-
dimensional, along the normal to the parallel walls. The mesoscopic model then
admits a variety of analytical results, in particular an asymptotic analysis yields
closed-form expressions for the flow and orientation tensor in the dual limit of slow
flow and strong distortional elasticity. These results are based on identical anchoring
conditions of the nematic liquid at both plates, which means the elastic distortion
in the material arises upon inception of flow. This assumption is more for conve-
nience than practical consideration; it allows one to use the large body of results
on homogeneous nematic liquids (so-called monodomains) in imposed linear flows
to guide the early structure evolution in experiments. In reality, nematic liquids
are rarely free of heterogeneity, so this study is aimed toward an understanding of
how flow generates structure evolution from a controlled quiescent equilibrium with
distortions. An imposition of different anchoring conditions of the nematogens at
parallel walls is a controllable condition for an experiment as well as in the model.
In our numerical simulations, we will track the structure morphology versus degree
of mismatch in the anchoring conditions for both experimental devices.

Effects of different wall anchoring conditions in liquid crystals, modeled by the
Leslie-Ericksen-Frank equations, have been studied extensively, cf. the treatise of
de Gennes & Prost [6]. The only nematic polymer studies we are aware of which
simulate mismatches in wall anchoring conditions for nematic polymers are the
recent lattice Boltzmann calculations for Couette flow by Marenduzzo, Orlandini,
and Yeomans [17], based on a mesoscopic Beris-Edwards model similar to our Doi-
Marrucci-Greco model. Their results are for full three dimensional simulations,
presented in terms of morphology between the plates which offer direct comparisons
to our posited one-dimensional results. They indicate a variety of phenomena which
are consistent with our observations. The comparison suggests a certain robustness
to higher dimensional effects of the layered features we restrict to. The parameter
space of these experiments, and of tensorial and full kinetic theory models, is huge.
As a result, the field remains far away from any coherent classification of types
of morphology, and correlations, in the flow, orientational distribution, or stored
stresses of nematic polymer films. Thus, we aim here to document phenomena
which may be explored for experimental and model validation.

For this paper, we do not jump right to the full complexity of the high Ericksen
number regime, which is the most physically relevant for liquid crystals and liquid
crystal polymers. This approach has led to an impasse in the field. First, there
are notorious numerical difficulties, and at high Ericksen numbers one has to set
extremely low time and space tolerances just to get converged simulations. Sec-
ondly, there are simply too many “sources” of complex phenomena (orientational
instabilities and shear banding and the question of their temporal and spatial cor-
relations, persistence length of plate boundary layers and structure within those
layers, spawning of defect cores) which need to be isolated and understood, and
then coupled into an eventual simulation with full blown complexity. In this paper,
we restrict our simulations to the regime of weak flow (realistic for processing appli-
cations) and strong elasticity (not realistic except perhaps during a thermal quench
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phase). With this motivation and caveats, our goal is two-fold: to compare morphol-
ogy features with exact analytical results for identical anchoring conditions; and to
avoid the parameter regime of unsteady structures. The release of these conditions,
as well as allowance for higher physical and orientational space dimensionality, are
deferred to future studies.

The reader is also referred to important work on mesoscopic model simulations
of structure in plane Couette flow, notably the work of Gary Leal and co-workers
[20], Alejandro Rey and co-workers [21, 22], and Morton Denn and co-workers [15].
The reviews of Denn and Rey [19] and Kroger [16] provide valuable reading and
background.

2. Formulation. Figure 1 illustrates the experimental setup for Couette (moving
plates) and Poiseuille (pressure gradient with stationary plates) devices. For the
channel flows shown in Fig. 1, the variations in physical space are limited to the
direction y between the parallel plates, allowing for stratified nonlinear shear flow.
For liquid crystals (LCs) and liquid crystal polymers (LCPs) confined between two
aligning plates, there are two important properties of the orientational distribution
of the rigid rod or platelet ensemble – elasticity and sensivitity to confining surfaces.
LCs and LCPs have elasticity due to short-range excluded volume interactions and
due to inhomogeneities, both of which cost energy when the nematic liquid is out
of the favored homogeneous equilibrium distribution. At sufficient concentrations,
the rest equilibrium is nematic, or ordered, with a peak direction called the major
director that is free in the absence of a selection mechanism. Confining surfaces
impose such a selection in the proximity of the surface, which is known as anchoring.
In practice, anchoring conditions can be tuned by rubbing, controlling the surface
temperature, and coating the plates with an amphiphilic material [6, 13].

Since liquid crystals are anisotropic viscoelastic materials, the modeling of these
structured materials must take the orientational order into account. Both the short-
range excluded volume potential and long-range distortional elasticity potential
contribute “extra stresses”, beyond the viscous stress and isotropic pressure. These
stresses then drive the flow, which is the mechanism for flow feedback or non-
Newtonian effects. In this paper we adopt the Doi-type tensor theory to study
nematic polymers in viscous solvents. This model relies on the kinetic (diffusion)
equation for a probability distribution function of a rodlike molecule in direction m
at position x and time t. The probability distribution function f(m,x) of Doi-Hess
kinetic theory is projected onto the second-moment tensor, M, a symmetric, trace
1, positive semi-definite tensor of rank 2. The ordered eigenvalues di of M satisfy
0 ≤ d3 ≤ d2 ≤ d1 ≤ 1, d1+d2+d3 = 1. The corrresponding ordered eigenvectors, ni

are the directors of the nematic liquid. The major director, n1, is the principal axis
of orientation. Traditionally, M is normalized to trace 0 by subtracting a multiple
of the identity tensor, defining the orientation tensor Q = M− 1

3I. The eigenvectors
(directors) and corresponding differences in eigenvalues of M and Q are identical.
The order parameters, s = d1 − d2, β = d2 − d3, describe the anisotropy of the
orientational distribution of the rod-like molecular ensemble. Defects are phases
of the liquid in which the major director is degenerate, or not uniquely defined,
a necessary condition being s = 0, which includes the isotropic phase Q = 0.
It turns out that stable, homogeneous equilibrium phases are either isotropic (at
low concentrations of rod-like molecules) or uniaxial, with s > 0, β = 0. These
uniaxial phases are thereby prescribed at each solid plate, and can be controlled
either chemically or mechanically (by rubbing).
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The Doi-type kinetic theory couples the orientation effect to the flow through
classical mechanics and kinetics principles. In this approach, the Newtonian stress
law is extended to include flow-orientation coupling. The dimensionless forms of
the balance of linear momentum, continuity equation, stress constitutive equation,
and the time evolution equation for the orientation tensor due to Doi, Marrucci,
and Greco are given as follows:
Balance of linear momentum:

d

dt
v = ∇ · (−pI + τ), (1)

where v is the velocity, p is the pressure, I is the unit tensor, and τ is the extra
stress.
Continuity equation:

∇ · v = 0. (2)

Stress constitutive equation:

τ =
(
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(3)

where Re is the solvent Reynolds number, Er is the Ericksen number (large val-
ues correspond to weak distortional elasticity), µi (i = 1, 2, 3) are three nematic
Reynolds numbers (normalized viscosities), D is the symmetric part of the velocity
gradient tensor, also known as the rate of strain tensor, α is a normalized entropic
parameter, a is a dimensionless parameter depending on the molecular aspect ratio
r of spheroidal molecules

a =
r2 − 1
r2 + 1

,

and the short-range excluded volume effects are captured by

F (Q) = (1−N/3)Q−NQ2 + NQ : Q(Q + I/3), (4)

where N is a dimensionless concentration of nematic polymers, which controls the
strength of the mesoscopic approximation, F (Q), of the gradient of the Maier-
Saupe potential. For this paper, we use the following parameter values. First we
set a nematic concentration N = 6, for which stable quiescent equilibria satisfying
F (Q) = 0 are uniaxial (β = 0), ordered phases with Flory order parameter s
given below, equation (7). We select a = 0.8, or aspect ratio r = 3, which for the
Doi closure gives excellent agreement with the full kinetic theory in the longwave
limit of sheared monodomains [10, 11, 12]. Finally we set α = 2.0, µ1 = 2.3867 ×
10−4, µ2 = 3.1667 × 10−3, µ3 = 3.5 × 10−3, consistent with our previous papers
[1, 9] so that we identify anchoring distortion effects; similarly, we use a constant
rotational diffusivity. Here we choose parameters in the regime of weak flow and
strong distortional elasticity where asymptotic analysis [9] yields closed-form steady
solutions and scaling laws with identical wall conditions. We restrict our simulations
to this regime to expose the effects of conflicting anchoring conditions, where we
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have a baseline for comparison. Detailed studies of other parameter regimes will be
explored in future work.
Orientation tensor equation:

d

dt
Q = ΩQ−QΩ + a [DQ + QD] +

2a

3
D− 2aD : Q(Q +

I
3
)

−
{

F (Q) +
1

3Er
[∆Q : Q(Q +

I
3
)− 1

2
(∆QQ + Q∆Q)− 1

3
∆Q]

}
.

(5)

Here Ω is the vorticity tensor defined by

Ω =
1
2
(∇v −∇vT ), (6)

where v is the velocity field for the flowing LCP and the superscript T denotes the
transpose of a second order tensor.

The boundary conditions for the velocity are scaled to

v|y=±1 =
{

(±De, 0, 0), for Couette flow,
(0, 0, 0), for Poiseuille flow, (7)

where De is the Deborah number, the ratio of the relaxation time relative to the
time scale set by the moving plates in the weak shear experiment. In this study we
assume homogeneous mesophase anchoring at the channel boundaries, given by

Q|y=±1 = s0(n±n± − I
3
), s0 =

1
4
(1 + 3

√
1− 8

3N
), (8)

where s0 is the stable uniaxial order parameter specified by the nematic concentra-
tion N , and n± is the equilibrium uniaxial director at y = ±1, respectively. All
simulations reported in this paper employ N = 6. Here we assume n± are anchored
at the channel boundaries at some experimentally dictated anchoring angle ψ±0 with
respect to the flow direction,

n± = (cos ψ±0 , sin ψ±0 , 0). (9)

The standard terminology employed here is: ψ±0 = 0, π/2 are called tangential and
homeotropic anchoring, respectively, since the director lies parallel or normal to the
plates; tilted anchoring describes any condition in between, 0 < ψ±0 < π/2.

Following our previous studies [1, 9] where we have analytical results to compare
with, we consider in-plane mesophase orientation of the nematic liquid, with two
directors of Q confined to the plane (x, y), but still admitting biaxiality. This
constraint implies that the orientation tensor can be written in terms of directors
and order parameters:

Q = s(y, t)(nn− I
3
) + β(y, t)(n⊥n⊥ − I

3
), (10)

with the directors n,n⊥ confined to the (x, y) plane and parametrized by the in-
plane Leslie angle ψ(y, t),

n = (cos ψ, sin ψ, 0),n⊥ = (− sin ψ, cosψ, 0). (11)

The third director is rigidly constrained along the vorticity axis. With this biax-
ial representation (10) of Q, the orientation tensor equation (5) can be written
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explicitly in terms of the two order parameters (s, β) and the Leslie angle ψ:
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where

U(s) = s[1− N

3
(1− s)(2s + 1)] , (13)

g(s, β) = 1 + 3sβ − β + 2s− 3s2 . (14)

The momentum equation simplifies to a single equation for the velocity component
vx along the primary flow direction,
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where
h(s, β) = (1− β + 2s)(1 + β − s). (16)

We seek steady solutions of the dimensionless Eqs. (12)-(16) subject to the bound-
ary conditions

s|y=±1 = s0, β|y=±1 = 0, ψ|y=+1 = ψ+
0 , ψ|y=−1 = ψ−0 , (17)

and

vx|y=±1 =
{ ±De, for Couette flow

0, for Poiseuille flow.
(18)
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3. Numerical Results. Figure 1 gives schematic diagrams for Couette and Poiseuille
flow. The schematic flow profiles are Newtonian, which are typically posited in stud-
ies which suppress flow feedback. As noted earlier, one of our principal aims is to
clarify the flow feedback induced by the extra stress, and the spatial correlations be-
tween the orientational distribution, stresses, and flow. Recall the second moment
tensor M uniquely defines a triaxial ellipsoid with principal axes ni with semi-axes
lengths di. The projection of this ellipsoid onto the shear plane (x-y) is depicted
in these schematics, showing a distortion in the principal axes across the gap; we
are further interested in the focusing and defocusing of the orientational distribu-
tion, which will be captured by distortions in the order parameters and thereby in
the shape of the ellipsoid. The schematic pictures show identical anchoring at the
plates; the simulations will explore contrasts in anchoring conditions.

V=V0 ,  Q=Q0

V=−V0 ,  Q=Q0

Directors

Y

X

V=0 ,  Q=Q0

V=0 ,  Q=Q0

Directors

Y

X

Figure 1. A schematic of the Couette flow (top) and Poiseuille
flow (bottom) setup with fixed tangential anchoring conditions at
both plates (ψ+/−

0 = 0).

The simulations reported here aim to highlight the coupling of weak flow and
anchoring distortions, for plate or drag-driven flow (Figures 2-4) and pressure-driven
flow (Figures 5-7). All figures are organized to visually distinguish each effect in
isolation and then their interaction. The anchoring distortion is parametrized by
the difference in imposed director angles at the plates:

∆ψ0 = ψ+
0 − ψ−0 . (19)

The device driving mechanisms are parametrized by the Deborah number, De, in
Couette flow for Figures 2-4, and by the normalized pressure gradient ε in Poiseuille
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flow, Figures 5-7. Column 1 in all figures suppresses anchoring distortions, either
imposing weak flows De = 0.1 in Figures 2-4 or weak pressure gradients ε = 0.1 in
Figures 5-7. Column 3 suppresses hydrodynamics (De = 0 or ε = 0) to illustrate
pure anchoring distortions for two anchoring mismatch conditions, chosen from
∆ψ0 = π/6, π/3, π/2. Then the middle Column 2 exhibits coupled flow-anchoring
distortion interactions. The discussions for each type of flow consist of comparisons
of Columns 1 and 2 to glean the effects of anchoring mismatch conditions on weak
flow structures developed previously [1, 9] for identical plate anchoring conditions,
then comparisons of Columns 2 and 3 to ascertain the perturbative effect of weak
flow on pure anchoring distortions.

The rows of each figure provide the various descriptive variables of the anisotropic
nematic polymer liquid. Rows 1-5 give, in order, the gap structure between the
bottom plate (y = −1) and top plate (y = +1) in: the major director angle ψ in
the x-y plane; the departure s−s0 of the uniaxial order parameter from equilibrium
value at the plates; the biaxiality order parameter β; the primary flow component
vx; the first normal stress difference N1 = τ11 − τ22; and the shear stress τ12.

3.1. Morphology for Couette flow. Figures 2-4 illustrate flow-nematic steady
state solutions and stored elastic stresses for plane Couette flow. We impose Er = 1
in all simulations to make contact with our previous analytical and numerical results
[9] for identical plate conditions in weak flow (De = 0.1), depicted in Column 1 of
each Figure. The purpose of three Figures 2-4 is to illustrate variability due solely
to changes in the lower plate anchoring angle, with all other conditions the same.

We begin with Figure 2, which imposes tangential anchoring (ψ−0 = 0) on the
lower plate in all simulations. Column 1 imposes the same condition at the up-
per plate; Columns 2 and 3 show two different upper plate mismatch conditions,
ψ+

0 = π/6 (dashed) and π/2 (dotted). An immediate conclusion from comparison
of Columns 1-3 is that anchoring distortions dominate weak flow effects. This is not
surprising, since we have imposed order one distortions in the director field across
the gap, with ∆ψ0 = π/6 and π/2, respectively, whereas the plate motion is asymp-
totically small (De = 0.1). The small parabolic distortion of the major director in
Column 1 is two orders of magnitude weaker than the imposed anchoring mismatch
distortion. This result has relevance in highly heterogeneous nematic polymer films,
for example, which are riddled with defects that essentially impose strong anchoring
distortions in the interstitial regions between them. One concludes that only strong
flows are capable of modifying defect-ridden morphology.

Column 3 provides interesting insight into pure anchoring distortions. Some
time ago, the authors [7, 8] investigated exact solutions of these mesoscopic model
equations without flow, De = 0. The goal was to see which equilibrium structures
could arise in the competition between short-range excluded volume and long-range
distortional potentials. We were able to construct families of exact solutions by
positing a separable form of the orientation tensor, in which we either froze the
order parameters or froze the director field. These were free space solutions, absent
of boundary conditions as asserted in Column 3. We speculated at that time that
boundary conditions were necessary as selection mechanisms among these paramet-
ric families of solutions, and even anticipated that the exact separability would be
modified. Remarkably, the pure anchoring distortions of Column 3 provide an exam-
ple where boundary-anchoring conditions select a number of the special free-space
solutions dominated by distortional (director) elasticity. Note the order parameter
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variations across the gap from the equilibrium values at the plates, (s, β) = (s0, 0),
are extremely weak.

Perhaps the most intriguing result of Figure 2 is the non-Newtonian flow feedback
captured by Row 4. For equal plate anchoring conditions, it was shown in [9] that the
leading order flow for oppositely moving parallel plates is Newtonian, i.e., simple
linear shear; that is revealed in Column 1 of Row 4. Column 3 is of course the
quiescent zero flow for stationary plates. Column 2 shows the remarkable nonlinear
shear induced by the plate anchoring distortions of the director field. The stronger
the distortion across the plate gap, i.e. as ∆ψ0 increases in absolute value, the
stronger the flow field is modified. We emphasize that the flow feedback effect
portrayed by these graphs is quite dramatic, and suggestive of a macroscopic flow
control by switching of the boundary anchoring conditions.

Another non-Newtonian flow feature we point to is the expected behavior at the
midgap, which is the Newtonian transition point from fluid moving to the right
with the upper plate to fluid moving to the left with the lower plate. This zero
flow transition point in the plate gap has shifted significantly toward the lower
plate. This symmetry breaking in the flow field is induced by anchoring mismatch
conditions! The macroscopic flow effect is remarkable: the top plate with these
anchoring conditions entrains a very large layer which moves like plug flow at nearly
the top plate speed. Then, because the mean shear rate across the gap has to equal
the plate-imposed Deborah number, a rapid transition layer forms near the lower
plate. The size of the top, fast-moving plug layer scales with the anchoring distortion
between the plates, while the bottom rapid transition layer scales inversely with the
degree of plate distortion.

Rows 5, 6 address the rheological perspective of stored stresses in these materials.
In Figure 2, the shear stress, Row 6, is constant across the gap, and only non-zero
with flow. This feature is upheld for each Couette simulation, primarily because of
the low De corresponding to slow plate motion, which translates to relatively small
gradients in local shear rate across the gap. (The Poiseuille simulations will enhance
shear stress variations because of stronger local gradients in shear rate.) The first
normal stress difference, N1, Row 5, is negligible for identical anchoring conditions,
then jumps 4 orders of magnitude with anchoring distortions. The morphology in
N1 correlates with the order parameter distortions, with amplitudes proportional to
the difference ∆ψ0; this effect cannot be resolved without the short-range excluded
volume potential of the Doi-Hess theory.

Figures 3 and 4 explore possible sensitivity, by comparison with Figure 2, due
solely to changes in the anchoring angle at the lower plate relative to the flow
and flow gradient directions. This investigation is motivated by results in [9] for
matching plate conditions in weak flow (De = 0.1), duplicated in Column 1, Figures
2-4. Observe that tilted (Figure 3) and normal (Figure 4) anchoring at the lower
plate amplify the boundary layer distortions in order parameters of Figure 2 by an
order of magnitude; N1 inherits the boundary layers at each plate.

We now move to the new results in Figures 3 and 4, involving plate anchoring
distortions, discussing Figure 3 first. Column 3, Rows 1-3 show pure anchoring
mismatch distortions without flow yield comparable amplitude variations in s, β, ψ
as Column 1 due to weak flow without anchoring distortions. However, the relative
signs of these orientation tensor features are the same if ∆ψ0 > 0, whereas they
are opposite if ∆ψ0 < 0! Thus, when weak flow and anchoring distortions are
coupled in Column 2, the opposing variations lead to non-convex distortions in
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the order parameters s, β for ∆ψ0 < 0. The director distortions from the plate
conditions are much stronger than the weak flow-induced distortions, which yield
perturbative corrections to Column 3. Since the first normal stress difference, N1,
tracks the morphology of the order parameters, it also has non-convex variations
for ψ+

0 = 0, where ∆ψ0 < 0. Once again, the most dramatic effects are seen in
Row 4, Column 2, where the flow concavity is non-linear as with Figure 2. A new
feature is exposed in Figure 3, however: the flow profile switches concavity with a
switch in sign of the anchoring mismatch condition, ∆ψ0 < 0 for tangential upper
plate anchoring (dashed) versus ∆ψ0 > 0 for homeotropic upper plate anchoring
(dotted). This represents a macroscopic flow response to sgn(∆ψ0) in the weak
flow limit, where zero mismatch yields a Newtonian shear profile, whereas mismatch
plate conditions yield non-Newtonian flow profiles of opposite concavity. The flow
profiles have nearly plug flow near one plate and strong gradients in the local shear
rate near the other plate. Once one convex profile is established, the other can
also be induced by symmetry considerations. Absent of effects of gravity, there is
no physical distinction in this problem between the top and bottom plates. Note
further the significant elastic stress profile variations in N1 and τ12 (Rows 4 &
5, Column 2 of Figure 3). The sign of ∆ψ0 leads to a doubling in amplitude of
N1 as well as non-convexity across the plate gap, similar to the structure of the
order parameters. The shear stress is likewise strongly amplified by one sign of the
anchoring mismatch, and negligible otherwise!

Figure 4 maintains a normal lower plate anchoring, and repeats the simulations
of Figures 2 and 3. There are no essential differences in the orientation tensor
features, except one notes the result from [9] in which the order parameters for
equal anchoring conditions have extra structure. This was shown analytically to
arise from a cancellation between the boundary layer structures and the structure
that spans the plates; see [9]. The main feature we glean from Figure 4 is in the
velocity profile, Row 4, Column 2. We observe the same concavity in vx for both
plate mismatch conditions, since each have ∆ψ0 < 0.

Putting the 3 figures together, we see that sgn(∆ψ0), the signum of the relative
difference in director anchoring between the plates, controls convavity of the non-
Newtonian flow feedback in this parameter regime of weak Couette flow.

3.2. Morphology for Poiseuille flow. Figures 5-7 illustrate gap structures for
Poiseuille flow, with the same parameter studies as Figures 2-4 except the normal-
ized plate speed De is replaced by the normalized pressure gradient ε. Columns 1
and 2 correspond to weak pressure gradient, ε = 0.1, while Column 3 is the pure
anchoring-induced distortion without flow, ε = 0, identical to Column 3 of Figures
2-4.

We comment upon those features which are specific to Poiseuille flow. First,
weak pressure gradient effects with equal plate anchoring conditions (Column 1)
produce three orders of magnitude weaker variations than pure anchoring distortions
with zero pressure gradient (Column 3) in all orientation features, s, β, ψ. The
primary effect of their coupling, Column 2, Rows 1-3, is a weak symmetry-broken
orientational morphology across the gap; it is not as dramatic as the Couette flow
predictions due to the relative weakness of the pressure-driven responses.

The Newtonian Poiseuille flow profile of Column 1, obviously absent in Column
3 where ε = 0, provides the preconditions for more significant flow feedback effects,
and thereby stress phenomena. Column 2 illustrates two remarkable non-Newtonian
flow features due to the coupling of pressure-gradients with anchoring distortions.
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First, there is a symmetry-breaking in the flow profile which shifts the peak velocity
(or zero gradient) toward one of the plates, by a significant distance proportional
to |∆ψ0|, toward the top plate if ∆ψ0 < 0 and toward the bottom plate if ∆ψ0 > 0.
These effects are illustrated in Figures 5-7, Row 4. Second, anchoring distortions
can either weaken (if ∆ψ0 > 0) or strengthen (if ∆ψ0 < 0) the flow, by significant
percentages that are proportional to |∆ψ0|! In Figure 5, note approximately 20%
and 50% drops in flow strength across the gap induced by anchoring distortions
with ∆ψ0 > 0, a similar result in the dotted graph of Figure 6, Row 4, Column 2,
to be contrasted with comparable increases in flow strength across the gap induced
by ∆ψ0 < 0 in the dashed curve of Figure 6, Row 4, Column 2 and both curves in
Figure 7, Row 4, Column 2.

The first normal stress difference, N1, Row 5 of Figures 5-7, shows similar signif-
icant features due to the coupling of pressure-driven flow and anchoring distortions,
displayed in Column 2. Absent of this coupling, N1 > 0 for pure anchoring distor-
tions, Column 3, with values on the order of 0.1 − 0.2. The weak pressure-driven
values of N1 are 3-4 orders of magnitude lower for weak Poiseuille flow and match-
ing tangential or normal anchoring at each plate (Figures 5, 7, Column 1, Row 5).
Tilted anchoring at both plates in weak flow, Figure 6, Row 5, Column 1, yields
strongly enhanced N1, with odd symmetry between the plates and mean zero. Then
with coupling of pressure gradients and anchoring distortions, all Poiseuille simula-
tions yield asymmetric first normal stress differences, with shifts in the gap location
and amplitude of maximum N1. The trends are more involved than a simple di-
agnostic such as sgn(∆ψ0), as with the velocity profile. In cases where N1 across
the gap is relatively small due to weak anchoring distortions and flow, Figure 5,
Column 1 and 3, Row 5, the coupling can lead to sign changes in N1 across the gap.

The shear stress, which is proportional to the gradient of vx, is consistent with
the gradient of Row 4 in all figures, and presents no surprises.

Concluding Remarks. Heterogeneity in the orientational distribution of nematic
polymer ensembles in viscous solvents has been modeled for plane Couette and
Poiseuille flows. This study has a particular focus on the coupling of anchoring-
induced distortions at solid walls with weak drag-driven or pressure-driven flow.
We have identified remarkable non-Newtonian flow and stress features generated
in these conditions. The most dramatic effect is the degree to which the symme-
try breaking of the plate anchoring conditions across the gap induces asymmetric
macroscopic flow profiles and first normal stress differences. Furthermore, the degree
of asymmetry and location of peak velocity relative to the plates can be switched
by modifying the amplitude and sign in the difference between the plate anchor-
ing angles of the major director of the orientation distribution. These results, if
validated experimentally, suggest intriguing potential applications. For example, if
the anchoring conditions were controllable by applied fields at solid walls, such as
electric or magnetic fields, then one might consider switching boundary anchoring
conditions to effect macroscopic flow and internal stress modifications.

The implications of these flow feedback phenomena at realistic distortional elas-
ticity constants, i.e., much higher Ericksen numbers, are likely to be confined in
short lengthscale boundary layers of size Erp, where 0 < p < 1, according to as-
ymptotic scaling laws [1, 9]. It remains to be explored how these boundary layers
penetrate into the interior during confined processing flows and influence bulk flow
and stored stress profiles. Another issue remains to be addressed in the future is the
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non-uniqueness and multistability under hybrid anchoring conditions, even though
this problem has been considered for identical anchoring conditions [2, 3, 4, 14, 18].
We anticipate multiple states with these hybrid boundary conditions, but thus far
we have not pursued this issue. In particular, it is highly likely that there will be
confined in-plane structures together with out-of-plane structures, just like we have
found in our simulations with symmetric anchoring conditions. How those multi-
ple states evolve due to mismatches in anchoring is a topic we have only started
to explore. The studies presented here afford a glimpse into the delicate morphol-
ogy coupling that is possible in confined flows of nematic (rigid rod or platelet)
dispersions. The authors and collaborators have only begun to use homogenization
theory of high-aspect-ratio spheroidal inclusions to transfer these flow-induced mor-
phologies in the orientation distribution and stored anisotropic stresses to infer bulk
nano-composite material properties [23, 24, 25]. The anisotropic property tensors
associated with structures shown here provide a theoretical basis for understand-
ing performance features of high performance nematic polymer materials. In this
regard, while these structures are determined in idealized model simulations, they
are a natural starting point to explore the huge parameter space of nano-composite
processing conditions.
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Figure 2. Flow-nematic steady state solutions and associated
stored elastic stresses for plane Couette flow, with Er = 1 held
constant in all simulations, and fixed tangential anchoring at the
lower plate (ψ−0 = 0). Columns 1 and 2 impose weak plate motion,
with De = 0.1; Column 3 gives the pure anchoring-induced distor-
tional structures without flow (De = 0). Column 1 has identical
plate conditions; Columns 2 and 3 show two different upper plate
conditions, ψ+

0 = π
6 (dashed) and π

2 (dotted). Rows 1-5 give, in or-
der, the gap structure between the bottom plate (y = −1) and top
plate (y = +1) in: the major director angle ψ in the x-y plane; the
departure s− s0 of the uniaxial order parameter from equilibrium
value at the plates; the biaxiality order parameter β; the primary
flow component vx; the first normal stress difference τ11− τ22; and
the shear stress τ12.
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Figure 3. Couette flow structures, all with Er = 1, following
Figure 2 except the lower plate is always maintained at the tilted
anchoring condition ψ−0 = π

6 . Column 1 gives results for identical
conditions at the top plate and slow flow De = 0.1. Column 3 gives
results for zero flow De = 0, Column 2 with slow flow De = 0.1,
for two different anchoring mismatches ψ+

0 = 0 (dashed) and π
2

(dotted). Rows 1-5 depict the same orientational, flow, and stress
variables as Figure 2.
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Figure 4. Couette flow structures, following Figures 1 and 2,
except the lower plate is maintained throughout with homeotropic
anchoring ψ−0 = π

2 . Column 1 is with identical anchoring at the
top plate, with De = 0.1. Column 3 is the pure anchoring induced
distortions without flow, Column 2 is the result with both slow flow
and anchoring distortions, for two top plate anchoring conditions,
ψ+

0 = π
6 (dotted) and 0 (dashed). Rows 1-5 depict orientational,

flow, and stress variables as in Figures 2,3.
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Figure 5. Gap structures for Poiseuille flow, with the same pa-
rameter studies as Figure 2 except the normalized plate speed De
is replaced by the normalized pressure gradient ε. The lower plate
anchoring condition is controlled at ψ−0 = 0; Column 1 has iden-
tical top plate anchoring, whereas Columns 2 and 3 show results
with anchoring mismatches, ψ+

0 = π
6 (dashed) and π

2 (dotted).
Columns 1 and 2 correspond to weak pressure gradient, ε = 0.1,
while Column 3 is the pure anchoring-induced distortion without
flow, ε = 0.
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Figure 6. Gap structures for the Poiseuille flow analog of Figure
3, with the weak pressure gradient ε replacing the weak plate speed
De. The lower plate anchoring angle is tilted, ψ−0 = π

6 . Column 1
corresponds to identical plate anchoring at the top plate; Column 2
(with weak pressure gradient ε = 0.1, top plate conditions ψ+

0 = 0
(dashed) and π

2 (dotted) and Column 3 (with zero flow, ε = 0,
top plate conditions ψ+

0 = 0 (dashed) and π
2 (dotted)), give results

with anchoring distortions.
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Figure 7. Gap structures for the Poiseuille flow analog of Figure
4, with homeotropic lower plate anchoring angle, ψ−0 = π

2 , weak
pressure gradient ε = 0.1 in Columns 1 and 2, and zero flow in
Column 3. Column 1 corresponds to identical top and bottom plate
anchoring conditions, while Columns 2 and 3 exhibit structures
with anchoring mismatches, ψ+

0 = π
6 (dotted) and 0 (dashed).


